nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 231-239
基于代谢组和蛋白组联合分析栽培基质对银耳氨基酸合成的影响
基金项目(Foundation): 国家自然科学基金项目(32402653); 通江县食用菌科研合作项目(SCTJ-2023001); 四川省农科院重点科研项目(1+9KJGG007)
邮箱(Email): yongwang3729@163.com;
DOI: 10.13341/j.jfr.2024.1841
摘要:

为了探究栽培基质对银耳Tremella fuciformis子实体中氨基酸合成的影响,采用代谢组学和蛋白质组学比较分析以代料(70%棉籽壳和30%麸皮组成)和青冈木为栽培基质栽培的银耳子实体的氨基酸含量,并结合关联分析探究栽培基质影响银耳氨基酸合成的机制。结果表明,代料栽培银耳TF1子实体的蛋白质和氨基酸含量以及生长速度显著高于青冈木栽培银耳TY3。通过液质联谱分析,筛选出显著差异代谢物488种,其中氨基酸、肽类及其类似物占比最高,利用蛋白质组学方法筛选出668个差异表达蛋白质。对代谢组与蛋白质组数据进行关联分析,发现银耳色氨酸、酪氨酸、赖氨酸等氨基酸合成通路和戊糖磷酸途径的调控网络,进一步验证得出代料栽培银耳通过增加NADPH促进氨基酸合成,导致其氨基酸含量显著高于青冈木基质生长银耳。研究有助于探究栽培基质调控银耳氨基酸合成的机制,为发展银耳产业优质高效栽培模式提供理论依据。

Abstract:

In order to explore the regulatory effect of culture substrates on amino acid synthesis in the fruiting body of Tremella fuciformis, metabolomics and proteomics were applied in this study. Two kinds of substrates(a mixed substrate made of wheat bran and cottonseed hull and a Cyclobalanopsis substrate) were used to for the investigation, which revealed a result that the total contents of proteins and amino acids of T. fuciformis grown on the mixed substrate were significantly higher than those grown on the Cyclobalanopsis substrate. A total of 488 metabolites with significant differences in quantity between the two substrates were identified by LC-MS/MS, in which amino acids and peptides including their similar substances accounted for the highest proportion. Moreover, a total of 1 685 proteins were identified by using proteomics and 668 differentially expressed proteins were screened out. Correlation analysis of metabolomic and proteomic data revealed a presence of the regulatory network on the amino acid synthesis pathway, such as tryptophan, tyrosine and lysine and pentose phosphate pathways. Our study demonstrated, furthermore, an increment of NADPH content in the T. fuciformis grown on the mixed substrate, which led to the higher amino acid content of T. fuciformis than that of Cyclobalanopsis substrate. The above results obtained at the present study should help to understand the regulatory mechanism of amino acid synthesis under the different cultivation substrates in T. fuciformis and provide a theoretical basis for developing a high-quality and efficient cultivation model as well.

参考文献

[1] Chandra N S, Gorantla S, Priya S, et al. Insight on updates in polysaccharides for ocular drug delivery[J]. Carbohydrate Polymers, 2022, 297:120014.

[2] Xu Y Y, Xie L Y, Zhang Z Y, et al. Tremella fuciformis polysaccharides inhibited colonic inflammation in dextran sulfate sodium-treated mice via Foxp3+T cells, gut microbiota, and bacterial metabolites[J]. Frontiers in Immunology, 2021, 12:648162.

[3] Garrigues S, Kun R S, Peng M, et al. The cultivation method affects the transcriptomic response of Aspergillus niger to growth on sugar beet pulp[J]. Microbiology Spectrum, 2021,9(1):e01064-21.

[4] Ruiz-Villafán B, Cruz-Bautista R, Manzo-Ruiz M, et al. Carbon catabolite regulation of secondary metabolite formation,an old but not well-established regulatory system[J]. Microbial Biotechnology, 2022, 15(4):1058-1072.

[5] Shen Hengsheng, Chen Junchen, Tang Baosha, et al. Fibrous substrate conversion and its correlation to phenolic antioxidants in edible fungi[J]. Fujian Journal of Agricultural Sciences, 2007, 22(4):337-40.

[6]马运龙,林占熺,陈超前,等.不同鲜菌草工厂化栽培银耳产量和品质分析[J].种业导刊,2021, 6:14-19.

[7] Mineroff J, Jagdeo J. The potential cutaneous benefits of Tremella fuciformis[J]. Archives of Dermatological Research,2023, 315(7):1883-1886.

[8]国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中蛋白质的测定:GB 5009.5—2016[S].北京:中国标准出版社,2017.

[9]中华人民共和国卫生部,中国国家标准化管理委员会.食品中蛋白质的测定:GB/T 5009.5—2003[S].北京:中国标准出版社,2004.

[10]高虎涛,申晓林,孙新晓,等.代谢工程调控策略在生物合成氨基酸及其衍生物中的应用[J],化工学报,2020,71(9):4058-4070.

[11] Wray L V Jr, Ferson A E, Fisher S H. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H[J].Journal of Bacteriology, 1997, 179(17):5494-5501.

[12] Turi T G, Loper J C. Multiple regulatory elements control expression of the gene encoding the Saccharomyces cerevisiae cytochrome P450, lanosterol 14 alpha-demethylase(ERG11)[J]. Journal of Biological Chemistry, 1992, 267(3):2046-2056.

[13] Huang X Y, Zhang R J, Yang Q Y, et al. Cultivating Lentinula edodes on substrate containing composted sawdust affects the expression of carbohydrate and aromatic amino acid metabolism-related genes[J]. mSystems, 2022, 7(1):e00827-21.

[14] Zhan M L, Kan B J, Dong J J, et al. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply[J]. Journal of Industrial Microbiology&Biotechnology, 2019, 46(1):45-54.

[15] Becker J, Klopprogge C, Zelder O, et al. Amplified expression of fructose 1, 6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources[J]. Applied and Environmental Microbiology, 2005, 71(12):8587-8596.

[16] Lindner S N, Niederholtmeyer H, Schmitz K, et al. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum:biochemical properties and impact of ppnK overexpression on lysine production[J]. Applied Microbiology and Biotechnology, 2010, 87(2):583-593.

[17] Neuner A, Heinzle E. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering[J]. Biotechnology Journal, 2011, 6(3):318-329.

[18] Shi F, Huan X J, Wang X Y, et al. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum[J]. Enzyme and Microbial Technology, 2012, 51(2):73-80.

[19] Hwang G H, Cho J Y. Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum[J]. Journal of Industrial Microbiology&Biotechnology,2012, 39(12):1869-1874.

[20] Marx A, Striegel K, de Graaf A A, et al. Response of the central metabolism of Corynebacterium glutamicum to different flux burdens[J]. Biotechnology and Bioengineering,1997, 56(2):168-180.

[21] Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli[J]. Journal of Biological Chemistry, 2004, 279(8):6613-6619.

[22] Moritz B, Striegel K, de Graaf A A, et al. Kinetic properties of the glucose-6-phosphate and 6 phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo[J].European Journal of Biochemistry, 2000, 267(12):3442-3452.

[23] Georgi T, Rittmann D, Wendisch V F. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose:Roles of malic enzyme and fructose-1,6-bisphosphatase[J]. Metabolic Engineering, 2005, 7(4):291-301.

[24] Ohnishi J, Katahira R, Mitsuhashi S, et al. A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum[J]. FEMS Microbiology Letters, 2005,242(2):265-274.

基本信息:

DOI:10.13341/j.jfr.2024.1841

中图分类号:S567.34

引用信息:

[1]许瀛引,张仕林,罗定平等.基于代谢组和蛋白组联合分析栽培基质对银耳氨基酸合成的影响[J].菌物研究,2025,23(03):231-239.DOI:10.13341/j.jfr.2024.1841.

基金信息:

国家自然科学基金项目(32402653); 通江县食用菌科研合作项目(SCTJ-2023001); 四川省农科院重点科研项目(1+9KJGG007)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文